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Unscented Kalman Filtering for Simultaneous
Estimation of Attitude and Gyroscope Bias

Donghoon Kang , Member, IEEE, Cheongjae Jang, and Frank C. Park , Fellow, IEEE

Abstract—We present an unscented Kalman filtering al-
gorithm for simultaneously estimating attitude and gyro-
scope bias from an inertial measurement unit (IMU). The
algorithm is formulated as a discrete-time stochastic non-
linear filter, with state space given by the direct product
matrix Lie group SO(3) × R3, and observations in SO(3)
reconstructed from IMU measurements of gravity and the
earth’s magnetic field. Computationally efficient implemen-
tations of our filter are made possible by formulating the
state space dynamics and measurement equations in a way
that leads to closed-form equations for covariance propa-
gation and update. The resulting attitude estimates are in-
variant with respect to choice of fixed and moving reference
frames. The performance advantages of our filter vis-à-vis
existing state-of-the-art IMU attitude estimation algorithms
are validated via numerical and hardware experiments in-
volving both synthetic and real data.

Index Terms—Attitude estimation, gyroscope bias, iner-
tial measurement unit (IMU), unscented Kalman filter (UKF).

I. INTRODUCTION

E STIMATING an object’s orientation, or attitude, from an
inertial measurement unit (IMU) attached to the object

arises in applications ranging from vehicle and robot navigation
[1]–[3] to human pose tracking [4]. A typical IMU consists of
a gyroscope, accelerometer, and magnetometer: the gyroscope
measures angular velocities (which can be integrated to cal-
culate the attitude), the accelerometer measures accelerations
due to gravity and other external forces, and the magnetometer
measures the earth’s magnetic field. Gyroscopic measurements
contain a time-varying bias error, and accelerometer and magne-
tometer measurements can be used to identify and compensate
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for this gyroscope bias. More generally, the challenges and ben-
efits of simultaneously estimating the attitude and gyroscope
bias from disparate sensor measurements are detailed in [5] and
the cited references.

Notable among deterministic filtering methods for simultane-
ously estimating attitude and gyroscope bias are Mahony et al.’s
series of nonlinear complementary filters (NCFs) [6]–[8]; these
filters ensure almost global stability of the observer error, and
their performance has been validated in numerous experimental
scenarios. Stochastic filtering methods further take into account
statistical characterizations of measurement and process noise,
and include well-known and widely used methods such as the
extended Kalman filter (EKF). More recently the unscented
Kalman filter (UKF), despite its greater computational com-
plexity, has been shown to outperform the EKF in a wide range
of applications [9]–[11].

Because the underlying configuration space of rotations, rep-
resented by the group SO(3) of 3× 3 real orthogonal matrices
with unit determinant, is not a vector space but a curved space,
the attitude estimation problem is fundamentally a nonlinear
one. The straightforward but naive approach of expressing a
rotation in terms of some suitable local coordinates (e.g., roll-
pitch-yaw angles, Euler angles) is problematic at several levels:
the local coordinates contain singularities that require special
treatment (for example, when the pitch angle is 90◦), and the
resulting estimates depend both on the choice of local coordi-
nates as well as fixed and moving reference frames. If standard
vector space filters are naively adapted to local coordinate rep-
resentations of the attitude, not only are the equations for the
state space dynamics and measurements highly nonlinear and
dependent on the choice of reference frames, but filtering per-
formance is highly uneven throughout different regions of the
configuration space.

Recent research has attempted to address the issue of coor-
dinate and reference frame dependency through the use of dif-
ferential geometric methods. Although computationally more
involved than standard vector space filtering algorithms, when
correctly formulated, these methods are invariant with respect
to the choice of fixed and moving reference frames, and also
independent of the choice of local coordinates used to param-
eterize the rotations. For estimation problems in which the un-
derlying configuration space has the structure of a matrix Lie
group like SO(3), coordinate-invariant versions of both the EKF
[12]–[15], the UKF [16], [17], and also particle filtering meth-
ods [18] have been presented in the recent literature. With-
out exception, these general methods almost always include
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illustrative examples involving estimation on the rotation group,
e.g., [14].

In this paper, we address the problem of simultaneous esti-
mation of attitude and gyroscope bias from a stochastic differ-
ential geometric perspective. When the assumed noise models
are valid, the advantages of stochastic filtering methods over
their deterministic counterparts are well documented. For real-
time applications, stochastic filtering methods require efficient
calculation and propagation of covariances, which often prove
to be difficult for systems with complex nonlinear state dynam-
ics and measurements. Our contribution takes advantage of the
coordinate- and frame-invariant properties of geometric filter-
ing, and at the same time leads to a robust and computationally
efficient stochastic UKF algorithm that can be implemented in
real time. These improvements in efficiency and robustness are
achieved by formulating the state dynamics and measurements
in a way that leads to closed-form equations for covariance
propagation and update, and also by drawing upon Lie-theoretic
properties in key steps of our geometric UKF algorithm.

This paper is organized as follows. After a brief review of
geometric preliminaries in Section II, our UKF algorithm for
simultaneously estimating attitude and gyroscope bias is de-
scribed in Section III. Section IV details the calculation of the
measurement noise covariance. Section V compares the perfor-
mance of our geometric UKF algorithm against other existing
state-of-the-art estimators for attitude and gyroscope bias [6],
[19], [20], with detailed experiments involving both synthetic
and real data validating the performance advantages of our ge-
ometric UKF algorithm.

II. GEOMETRIC PRELIMINARIES

We first recall some basic facts and useful formulas about
the rotation group SO(3) [21], [22]. Elements of SO(3) are
represented by the 3× 3 real matrices R satisfying RT R = I
and detR = 1, where I denotes the 3× 3 identity matrix. SO(3)
is an example of a matrix Lie group; its associated Lie algebra,
denoted so(3), is given by the set of 3× 3 real skew-symmetric
matrices of the form

[ω] =

⎡
⎢⎣

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎥⎦

where ω = (ω1, ω2, ω3)T ∈ R3. A fundamental connection be-
tween so(3) and SO(3) is the matrix exponential map exp :
so(3)→ SO(3), given as

exp([ω]) =
∞∑

m=0

[ω]m

m!

= I +
sin ‖ω‖
‖ω‖ [ω] +

1− cos ‖ω‖
‖ω‖2

[ω]2

where ‖ · ‖ represents the standard Euclidean vector norm. The
inverse of the exponential, or logarithm, of SO(3) is defined as
follows: for any R ∈ SO(3) such that tr(R) �= −1

log R =
θ

2 sin θ
(R−RT )

where θ satisfies 1 + 2 cos θ = tr(R), |θ| < π [here, tr(·) de-
notes the trace of a matrix]. If tr(R) = −1, then the equation
log R = [ω] has two antipodal solutions ±ω that can be deter-
mined from the relation R = I + (2/π2)[ω]2. A straightforward
calculation also establishes that ‖ log R‖/√2 = θ, where ‖ · ‖
denotes the Frobenius matrix norm.

The natural way to measure distances between two rotations
R1 and R2 is via the formula

d(R1,R2) = ‖ log(RT
1 R2)‖.

The aforementioned distance metric is invariant with respect
to left and right translations, or bi-invariant, in the sense that
d(R1,R2) = d(PR1Q,PR2Q) for any P,Q ∈ SO(3). With
this notion of distance, the curve R(t) on SO(3) of short-
est length (or minimal geodesic) that connects R1 = R(0)
and R2 = R(1) is given by R(t) = R1 exp(Ωt), where Ω =
log(RT

1 R2) ∈ so(3).
Recalling that R3 is also trivially a Lie group under vector

addition, the direct product SO(3)×R3 can be given the struc-
ture of a Lie group via the product rule (R1,b1) · (R2,b2) =
(R1R2,b1 + b2) and the inversion rule (R,b)−1 = (RT ,−b).

Now, define a random variable X on SO(3) as

X := exp([η])X0 (1)

where X0 ∈ SO(3) is given andη ∈ R3 is a zero-mean Gaussian
with covariance Pη , i.e., η ∼ N (0,Pη ). We refer to η as right-
translated exponential noise with right-invariant covariance
Pη . Alternatively, defining the random variable X on SO(3)
as X = X0 exp([ζ]), where [ζ] ∈ so(3) and ζ ∼ N (0,Pζ ), we
refer to ζ as left-translated exponential noise with left-invariant
covariance Pζ . A straightforward calculation verifies that

η = X0ζ (2)

Pη = X0PζXT
0 . (3)

Statistical and computational aspects of SO(3) exponential noise
defined in this way are further discussed in [23] and [24].

Now consider the element (X,b) = (exp([η])X0,b0 + n) ∈
SO(3)×R3, where [η] ∈ so(3),X0 ∈ SO(3), and b0,n ∈ R3,
with X0,b0 constant and η,n zero-mean Gaussian random
vectors. Define the six-dimensional (6-D) zero-mean Gaussian
ε = (η,n) ∼ N (0,Pε), where Pε ∈ R6×6 is the covariance of
ε. The 6-D covariance Pε will play a prominent role in our later
UKF algorithm; in particular, the off-diagonal elements of Pε

will typically be nonzero since X and b may be correlated.

III. UKF ALGORITHM FOR ESTIMATING ATTITUDE AND

GYROSCOPE BIAS

Before describing our geometric UKF algorithm, we fix no-
tation, describe the sensor models and their underlying assump-
tions, and review Wahba’s Problem [25] and its solutions.

Let {I} be the inertial reference frame fixed to ground, and
let {B} denote the body frame fixed to the moving IMU. Let
ωm ∈ R3 be the angular velocity measured by the IMU gyro-
scope with respect to frame {B}. Denote by a,m ∈ R3 the IMU
accelerometer and magnetometer measurements, respectively;
likeωm , both a and m are assumed measured with respect to the
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IMU frame {B}. Further define the unit vectors v1 := a/‖a‖,
v2 := m/‖m‖.

In what follows, we assume that the IMU is suitably cali-
brated, and that the gravitational acceleration is dominant in the
accelerometer measurement a. Let r1 ∈ R3 be the unit vector in
the opposite direction of gravity, and r2 ∈ R3 be the unit vector
in the direction of the earth’s magnetic field. If r1 and r2 are
not collinear, then ri and vi should satisfy ri = Rvi , i = 1, 2,
for some rotation R ∈ SO(3) representing the orientation of the
IMU frame {B} relative to the fixed frame {I}. Since in prac-
tice IMU measurements are noisy, R is typically estimated as
the solution to the following optimization problem (referred to
in the literature as Wahba’s Problem [5], [25], [26]):

R∗ = arg min
R∈SO(3)

2∑
i=1

wi‖ri −Rvi‖2 (4)

where the wi are positive weights. A popular choice for wi is
wi = 1/σ2

i , where σ2
i denotes the variance of vi in the direction

normal to RT ri [27]. (Equivalently, the normalized weights
wi = σ2

tot/σ2
i , where 1/σ2

tot =
∑2

i=1(1/σ2
i ) are also widely

used [28].)
Wahba’s Problem as defined by (4) admits the following

closed-form solution [26]:

R∗ = VDUT (5)

where U and V are obtained from the singular value decompo-
sition (SVD) of F :=

∑2
i=1 wivirT

i = UΣVT . The matrix D
in (5) is of the form D = diag(1, 1,det(VUT )). (See [5] for a
review of alternative solutions to (5) and a discussion of their
robustness and computational efficiency.)

A. State Space Dynamics and Measurements

Estimates of R obtained via the static optimization proce-
dure described earlier do not take into account the state space
dynamics of the object or process and measurement noise char-
acteristics, and typically are inferior to estimates obtained via
nonlinear stochastic filtering techniques. We now formulate the
overall problem in a discrete-time stochastic filtering setting.
First, the angular rates ωm

k ∈ R3 measured by the gyroscope at
time step k are assumed to have the form

ωm
k = ωk + bk + ηk (6)

whereωk denotes the ground-truth angular rate vector, bk ∈ R3

is a time-varying bias term, andηk is zero-mean Gaussian noise.
The state dynamics are then assumed to be of the form

Rk+1 = Rk exp([ωm
k − bk − ηk ]h) (7)

bk+1 = bk + nk (8)

where h is the integration time step, and ηk ,nk are independent
zero-mean Gaussians with the following distributions: ηk ∼
N (0, cI), nk ∼ N (0, dI), with c, d > 0.

We now derive a first-order linear approximation of the
state dynamics (7) that leads to a closed-form expres-
sion for the covariance of Rk+1 consistent with (1). From
the Baker–Campbell–Hausdorff formula [29], given [x], [y] ∈

so(3), exp([x]) exp([y]) can be written exactly in the form
exp([x]) exp([y]) = exp([z]), [z] ∈ so(3), where

[z] = log(exp([x]) exp([y])) (9)

= [x] + [y] +
1
2
[[x], [y]] +

1
12

[[x], [[x], [y]]]

+
1

12
[[y], [[y], [x]]] + · · · (10)

with the Lie bracket operator [·, ·] : so(3)× so(3)→ so(3) de-
fined by the matrix commutator, i.e., [[a], [b]] = [a][b]− [b][a].

Let x′ = z− y ∈ R3 and rewrite (9) in the form

exp([x′ + y]) = exp([x]) exp([y]). (11)

Gathering only terms linear in x in (10), the following approxi-
mation between x and x′ holds for ‖x‖ sufficiently small [23]:

x ≈ Jl(y)x′ (12)

where Jl(y) ∈ R3×3 is given by

Jl(y) = I +
(

1− cos ‖y‖
‖y‖2

)
[y] +

(‖y‖ − sin ‖y‖
‖y‖3

)
[y]2.

(13)
The derivation of (12) is provided in Appendix A.

If ‖ηk‖  1, then (7) can be approximated by

Rk+1 ≈ Rk exp([η′k ]h) exp([ωm
k − bk ]h) (14)

= exp([lk ])Rk exp([ωm
k − bk ]h) (15)

where η′k = −Jl(ψ)ηk , lk = Rkη
′
kh, ψ = (ωm

k − bk )h. In
deriving (14), the first-order approximation given by (12)
is used. The relation R exp([ω])RT = exp([Rω]) for R ∈
SO(3), [ω] ∈ so(3) is used in the derivation of (15).

Note that lk = −RkJl(ψ)ηkh is itself a random variable,
since it is a function of random variables ηk ,Rk , and ψ. If
we assume that ‖ψ‖ is small—this is a reasonable assump-
tion provided h is sufficiently small—then Jl(ψ) ≈ I + 1

2 [ψ] ≈
exp( 1

2 [ψ]) holds from the first-order approximation. Note that
lk can be approximated as an isotropic Gaussian multiplied by
rotation matrices, i.e., lk ∼ N (0, (ch2)I).

The measurement equations are assumed to be of the form

Yk+1 = exp([wk+1])Rk+1 (16)

where Yk+1 ∈ SO(3) is calculated as a solution to Wahba’s
Problem (4) using IMU gravitational acceleration and magnetic
field measurements. The measurement noise wk+1 ∈ R3 is as-
sumed to be zero-mean Gaussian, implying that the measure-
ment vector statistics are rotationally symmetric about their true
measurement vectors.

B. UKF Algorithm

We now present the geometric UKF algorithm for simulta-
neous attitude and gyroscope bias estimation. Let Rk and bk ,
respectively, denote the attitude and the gyroscope bias at time
step k, and Xk := (Rk ,bk ) ∈ SO(3)×R3.

1) Initialization: Let X̂0|0 = (R̂0|0, b̂0|0) be the initial state
estimate. The right-invariant covariance of X̂0|0, denoted P̂0|0, is
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given. From (5), R̂0|0 is estimated by solving Wahba’s Problem
(4) from a pair of initial measurement vectors (v1,v2).

2) Time Update:
1) From the a priori state estimate X̂k |k = (R̂k |k , b̂k |k ) and

its covariance Pk |k , extract a set of sigma points X (i)
k :=

(X (i)
R ,k ,X (i)

b,k ) ∈ SO(3)×R3, i = 0, . . . , 12, as follows:

X (0)
k = (R̂k |k , b̂k |k )

X (i)
k = (exp([γs(a)

i ])R̂k |k , b̂k |k

+ γs(b)
i ), i = 1, . . . , 6

X (i+6)
k = (exp([−γs(a)

i ])R̂k |k , b̂k |k

− γs(b)
i ), i = 1, . . . , 6

where following the work presented in [10], the parameter
γ is chosen as γ =

√
Nx + λ, with Nx set to the state

dimension (six) and λ = Nx(α2 − 1), 0 < α < 1; si ∈
R6 is the ith column vector of the lower-triangular matrix
S ∈ R6×6 in the Cholesky decomposition Pk |k = SST ,

and s(a)
i , s(b)

i ∈ R3 are, respectively, the upper and lower
halves of si .

2) Setting lk = 0 in (15) and nk = 0 in (8), define a set
of sigma points {(Υ(i)

R ,k+1,Υ
(i)
b,k+1) ∈ SO(3)×R3|i =

0, . . . , 12} as

Υ(i)
R ,k+1 = X (i)

R ,k exp([ωm
k −X (i)

b,k ]h) (17)

Υ(i)
b,k+1 = X (i)

b,k . (18)

3) Given the set of rotations {Υ(0)
R ,k+1, . . . ,Υ

(12)
R ,k+1} in

SO(3), evaluate the weighted mean rotation ῩR ,k+1 ∈
SO(3) using Algorithm 1. Taking advantage of the rapid
convergence of Algorithm 1 [18], [30], set the number of
iterations in line 2 of the algorithm to n = 3 or 4. The
weights w

(i)
m ∈ R in line 3 satisfy

∑12
i=0 w

(i)
m = 1.

4) The gyroscope bias estimate Ῡb,k+1 ∈ R3 is given by

the weighted mean of {Υ(0)
b,k+1, . . . ,Υ

(12)
b,k+1} in R3, i.e.,

Ῡb,k+1 =
∑12

i=0 w
(i)
m Υb . X̂k+1|k := (R̂k+1|k , b̂k+1|k ) is

then

(R̂k+1|k , b̂k+1|k ) = (ῩR ,k+1, Ῡb,k+1). (19)

5) Define the vectors [q(a)
i ] := log(Υ(i)

R ,k+1Ῡ
−1
R ,k+1) ∈

so(3) and q(b)
i := Υ(i)

b,k+1 − Ῡb,k+1. Concatenate the

two vectors q(a)
i ,q(b)

i into a single vector qi =
(q(a)

i ,q(b)
i ) ∈ R6. The predicted covariance is given by

Pk+1|k =
12∑

i=0

w(i)
c qiqT

i + Nk (20)

where w
(i)
c ∈ R are the weights and Nk = [(ch2)I 0

0 dI ] is
the process noise covariance.

6) Let ui ∈ R6 denote the ith column vector of the lower-
triangular matrix U ∈ R6×6 in the Cholesky decompo-
sition Pk+1|k = UUT . The upper and lower halves of

ui are, respectively, denoted u(a)
i ∈ R3 and u(b)

i ∈ R3.

Redraw the sigma points X (i)
k+1 := (X (i)

R ,k+1,X (i)
b,k+1),

(i = 0, . . . , 12) from X̂k+1|k and Pk+1|k as follows:

X (0)
k+1 = (R̂k+1|k , b̂k+1|k )

X (i)
k+1 = (exp([γu(a)

i ])R̂k |k , b̂k |k

+ γu(b)
i ), i = 1, . . . , 6

X (i+6)
k+1 = (exp([−γu(a)

i ])R̂k |k , b̂k |k

− γu(b)
i ), i = 1, . . . , 6.

3) Measurement Update:
1) If the IMU moves with high acceleration or is subject

to magnetic disturbances, the accelerometer and magne-
tometer measurements may be corrupted and not satisfy
our earlier assumptions. Appendix C summarizes some
existing methods for addressing these disturbances.

2) Setting wk+1 = 0 in (16), define the set of measurement
sigma points SY = {Y (i)

k+1 ∈ SO(3) | i = 0, . . . , 12} as
follows:

Y (i)
k+1 = X (i)

R ,k+1(i = 0, . . . , 12). (21)

3) The mean Ŷk+1 of {Y (0)
k+1, . . . ,Y (12)

k+1} is given by

Ŷk+1 = R̂k+1|k (22)

where R̂k+1|k is given by (19). The covariance of

{Y (0)
k+1, . . . ,Y (12)

k+1} is determined as

Pyy =
12∑

i=0

w(i)
c zizT

i (23)

where [zi ] := log(Y (i)
k+1Ŷ

−1
k+1) ∈ so(3). The innovation

covariance [9] is given by

Pvv = Pyy + Wk+1 (24)

where Wk+1 is the right-invariant covariance of the so-
lution to Wahba’s Problem. In Section IV, we derive a
closed-form expression for Wk+1 from (32).

4) Define [p(a)
i ] := log(X (i)

R ,k+1R̂
−1
k+1|k ) ∈ so(3) and

p(b)
i := X (i)

b,k+1 − b̂k+1|k ∈ R3, and pi = (p(a)
i ,p(b)

i ) ∈
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R6. The associated covariance Pxy is then calculated as

Pxy =
12∑

i=0

w(i)
c pizT

i . (25)

5) The Kalman gain is computed as K = PxyP−1
vv . Define

the innovation vector δ ∈ R3 as

[δ] := log(Yk+1Ŷ−1
k+1) ∈ so(3) (26)

where Yk+1 and Ŷk+1 are, respectively, given by (16)
and (22). Define φ(a) ∈ R3 and φ(b) ∈ R3 to be the up-
per and lower halves of φ := Kδ ∈ R6. The state and
covariance are now updated according to

X̂k+1|k+1 = (exp([φ(a) ])R̂k+1|k , b̂k+1|k + φ(b)) (27)

Pk+1|k+1 = M(φ(a))(Pk+1|k −KPyyKT )M(φ(a))
T

(28)

where M(φ(a)) ∈ R6×6 is given by

M(φ(a)) =

[
Jl(φ(a)) 0

0 I

]
. (29)

The justification for M(φ(a)) in (28) is given in
Appendix B.

IV. MEASUREMENT NOISE COVARIANCE

This section presents an algorithm for obtaining, from a set
of noisy unit vector measurements of the gravity and magnetic
field vectors, a full-rank measurement noise covariance matrix.

A. Covariances of the Solution to Wahba’s Problem

In [27], Shuster provides the following first-order approxi-
mation to the left-invariant covariance of R in the solution to
Wahba’s Problem (4):

(
2∑

i=1

1
σ2

i

(I− ĀrirT
i ĀT )

)−1

(30)

where Ā ∈ SO(3) denotes the true value of RT , which is usually
unknown. Ā can be approximated by

Ā ≈ arg min
A∈SO(3)

2∑
i=1

1
σ2

i

‖vi −Ari‖2. (31)

In [27] it is asserted, without rigorous proof, that the left-
invariant covariance of R is given by the inverse of the Fisher
information matrix. Appendix E provides a more detailed and
rigorous proof via the Cramer–Rao lower bound (CRLB).

Similarly, from (30) the right-invariant covariance of R can
be obtained as

(
2∑

i=1

1
σ2

i

(I− rirT
i )

)−1

. (32)

Equation (32) follows from a straightforward calculation com-
bining (3) and (30).

Note that the left-invariant covariance of R in (30) is equiv-
alent to the covariance of the solution to Wahba’s Problem
represented with respect to the IMU body frame. In contrast,
the right-invariant covariance of R in (32) is the covariance of
the solution to Wahba’s Problem represented with respect to
the fixed ground frame. If values for σ2

i , ri are given, the right-
invariant covariance of R in (32) can be determined to be a
constant matrix, independent of Ā. However, the left-invariant
covariance of R in (30) requires Ā, σ2

i , and ri .
When the IMU is moving, Ā is also changing, and the left-

invariant covariance of R needs to be updated at every time
step. The left-invariant covariance can be evaluated as the in-
verse of a matrix that varies with Ā, while the right-invariant
covariance remains invariant. When the IMU motion involves
both translation and rotation, measurements of the two direction
vectors v1 and v2 are subject to greater errors, leading to less
accurate estimates of Ā. For the reasons outlined earlier, our
measurement noise covariance formula of (32) is preferable to
Shuster’s formula (30) in the geometric UKF algorithm.

B. Determination of Parameters in the Covariance of R

In this section, we present an offline algorithm for deter-
mining the parameters in (32), i.e., σ2

i and ri , i = 1, 2, from
accelerometer and magnetometer measurements.

1) Constant Vectors (r1, r2): Assign each axis of the iner-
tial reference frame {I} as follows: The direction opposite to
gravity is set to be the y-axis of {I}, while the x-axis of {I} is
orthogonal to both gravity and the earth’s magnetic field. With
these assignments, r1 = (0, 1, 0)T and

r2 = (0, cos(φ), sin(φ))T (33)

where φ is unknown and to be determined.
We assume that the IMU is stationary, and multiple measure-

ment pairs are collected. Then v̂i := E(vi), i = 1, 2, can be cal-
culated from Proposition 1 in Appendix D. Since rT

1 r2 ≈ v̂T
1 v̂2,

φ can be approximated as

φ ≈ cos−1(v̂T
1 v̂2). (34)

2) Variances (σ2
1 , σ

2
2): Let the unit vector v̆i denote the true

value of the measured unit vector vi , i = 1, 2. The covariance
of vi is given by [31]

Mt = σ2
i (I− v̆i v̆T

i ). (35)

Let the SVD of Mt be Mt = UtΣtVT
t , where in principle

Σt = diag(σ2
i , σ

2
i , 0) and v̆i is the corresponding direction for

the singular value 0. Since in practice ground-truth values of
v̆i are unavailable, an alternative method of determining σ2

i is
needed. Assuming that the IMU is stationary and N measure-
ments are available, the covariance of vi can be estimated by

Ma =
1
N

N∑
j=1

(v(j )
i − v̂i)(v

(j )
i − v̂i)T (36)

where v(j )
i denotes the jth measurement vector obtained from

the ith sensor (sensor 1 is the accelerometer, while sensor 2 is
the magnetometer). Let the SVD of Ma be Ma = UaΣaVT

a ,
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where Σa = diag(s1, s2, s3) and s1 ≥ s2 ≥ s3, s3 ≈ 0. Σa will
typically be close to its theoretical value Σt , in which case we
can set

σ2
i =

tr(Ma)
2

. (37)

V. EXPERIMENTAL RESULTS

In this section, we compare the performance of our geometric
UKF algorithm “UKF on SO(3)” against other state-of-the-art
methods “UKF on Quaternion” [19], “EKF on Quaternion” [20],
and the passive NCF “NCF on SO(3)” [6]). Using both synthetic
and real data in our experiments, both the convergence rate
and accuracy of the attitude and gyroscope bias estimates are
compared.

Ground-truth values of the attitude and gyroscope bias at time
step k are denoted R̆k and b̆k , respectively. In both simulations
and real experiments, the filter update time step is set to h0 =
1/60 seconds. Define

sk := (180◦/π)‖ log R̆−1
k R̂k |k‖ (38)

dk := ‖b̂k |k − b̆‖ (39)

where sk and dk represent the estimation errors of the attitude
and gyroscope bias at time step k, respectively.

The weighting factors w
(i)
m and w

(i)
c in Section III-B are set

to

w(0)
m =

λ

λ + Nx
,w(0)

c =
λ

λ + Nx
+ (1− α2 + β) (40)

w(i)
m = w(i)

c =
1

2(λ + Nx)
, (i = 1, . . . , 2Nx). (41)

α in (40) is set to 0.9, and β is set to two for a Gaussian prior
[10].

A. Synthetic Data

In our numerical simulation experiments, the vectors in (4) are
set to r1 = (0, 1, 0)T and r2 = (0, cos(φs), sin(φs))T , where
φs = 2.4 rad. The ground-truth value R̆1 ∈ SO(3) is set ran-
domly to be the initial attitude.

For realistic simulation, we first collect a set of real angular
rate measurements ω̆k from an actual gyroscope (L3G4200D) at
the sampling rate 1/h0 = 60 Hz. From R̆1, true attitude matrices
can be iteratively generated by

R̆k+1 = R̆k exp([ω̆k ]h0).

The ground-truth value of the initial gyroscope bias is set to
be b̆0 = (−0.06, 0.3, 0.3)T rad/s. We then generate a set of
synthetic data as follows:

ωm
k = ω̆k + b̆k + ηω,k (42)

b̆k = b̆k−1 + ηb,k−1 (43)

v1,k = (R̆T
k r1 + ηv1, k

)/‖R̆T
k r1 + ηv1, k

‖ (44)

v2,k = (R̆T
k r2 + ηv2, k

)/‖R̆T
k r2 + ηv2, k

‖ (45)

where the Gaussian noise vectors have the following
distributions: ηω,k ∼ N (0, σ2

0I),ηb,k ∼ N (0, σ2
1I),ηv1, k

∼

Fig. 1. Simulation experiments: Attitude estimation errors (in degrees)
over the time intervals t ∈ [0, 16] s (top) and t ∈ [12, 44] s (bottom).

Fig. 2. Simulation experiments: Gyroscope bias estimation errors (in
radian/seconds) over the time intervals t ∈ [0, 16] s (top) and t ∈ [12, 44]
s (bottom).

N (0, σ2
2I), and ηv2, k

∼ N (0, σ2
3I), k = 1, . . . , N . Here, σ0 =

(1.1× 10−3/h0) rad/s, σ1 = (1.0× 10−5) rad/s, σ2 = 1.00×
10−2, and σ3 = 1.58× 10−2.

To simulate the large initial estimation errors of gyroscope
bias and attitude, we set b̂1|1 = 0 and R̂1|1 = R̆1 exp([a1]),
where a1 = (3.13/

√
3)(1, 1, 1)T . The noise covariances Nk in

(20) and Wk+1 in (24) of the proposed attitude estimator “UKF

on SO(3)” are set as follows: Nk = [(σ0h0)2I 0
0 σ 2

1I
] and Wk+1 =

( 1
σ 2

2
(I− r1rT

1 ) + 1
σ 2

3
(I− r2rT

2 ))−1.

From the simulation results shown in Figs. 1 and 2, it can be
seen that the proposed algorithm “UKF on SO(3)” converges
most rapidly over the time interval t ∈ [0, 14] s. To more reli-
ably assess the accuracy of each estimator, we generate 500 sets
of synthetic data using (42)–(45). Fig. 3 shows the histograms
of estimation errors of the attitudes and the slowly time-varying
gyroscope biases. Tables I and II summarize the experimen-
tal results corresponding to Fig. 3(a) and (b). From Fig. 3(b)
and Table II, it can be seen that the gyroscope bias estimates
show similar performance for all estimators. In terms of atti-
tude estimates, “UKF on SO(3)” is the most accurate among the
estimators [see Fig. 3(a) and Table I].

B. Real Experiments

The IMU for real experiments consists of an L3G4200D
gyroscope, LIS3LV02DQ accelerometer, HMC5883L magne-
tometer, and Cortex-M3 microcontroller. In real experiments,
ground-truth values of the slowly time-varying gyroscope bias
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Fig. 3. Simulation experiments: Histograms of estimation errors over
the time interval t ∈ [12, 44] s (averaged over 500 trials). (a) Histograms
of attitude estimation errors. (b) Histograms of gyroscope bias estimation
errors.

TABLE I
AVERAGE AND STANDARD DEVIATION OF ATTITUDE ESTIMATION ERRORS (IN

DEGREES) OVER THE TIME INTERVAL t ∈ [12, 44] S (AVERAGED
OVER 500 TRIALS)

TABLE II
AVERAGE AND STANDARD DEVIATION OF GYROSCOPE BIAS ESTIMATION
ERRORS (IN RADIAN/SECONDS) DURING TIME INTERVAL t ∈ [12, 44] S

OVER 500 TRIALS

are unknown. We therefore assume that the gyroscope bias is
initially unknown, but near-constant over short time durations.
If the IMU is stationary, then the gyroscope bias, denoted b̆, can
be temporarily captured by averaging a set of gyroscope data
over a certain time interval [32].

Keeping the IMU stationary, the variance σ2
i of the unit

vector vi,k , i = 1, 2, can be calculated from (37); in our ex-
periments we obtain the values σ2

1 = 8.95× 10−5 and σ2
2 =

1.911× 10−4. Denoting by φr the angle between r1 and r2,
i.e., φr = cos−1(rT

1 r2), we obtain φr = 2.486 rad using Propo-
sition 1 of Appendix D and (34). The noise covariances Nk

in (20) and Wk+1 in (24) of the proposed attitude estimator
“UKF on SO(3)” are set as follows: Nk = [ (2.0×10−9)I 0

0 (3.0×10−11)I ] and

Wk+1 = (
∑2

i=1
1
σ 2

i
(I− rirT

i ))−1.

To obtain the ground-truth value of the attitude R̆k at time
step k, we use the optical motion capture system OptiTrack
consisting of multiple networked infrared cameras. The IMU
and four reflective markers are first rigidly attached to a plas-
tic plate. A set of real data {(ωm

k ,v1,k ,v2,k ) | k = 1, . . . , Nr}
obtained from the moving IMU, and the ground-truth atti-
tude R̆k obtained from the OptiTrack infrared camera sys-
tem, are synchronously saved into files at a sampling rate

Fig. 4. Real experiments: Attitude estimation errors (in degrees) over
the time interval t ∈ [0, 14] s (top) and t ∈ [10, 50] s (bottom).

Fig. 5. Real experiments: Gyroscope bias estimation errors (in ra-
dian/seconds) over the time intervals t ∈ [0, 14] s (top) and t ∈ [10, 50] s
(bottom).

TABLE III
RESULTS OF REAL EXPERIMENTS: AVERAGE ERRORS OVER THE TIME

INTERVAL t ∈ [10, 50] S (AVERAGED OVER TEN EXPERIMENTS)

1/h0 = 60 Hz. Here, the number of measurements Nr is set
to 3000. For fair comparison among filters, we perform ex-
periments with real data under the condition of negligible
disturbances.

To evaluate the convergence rate and accuracy of each
filter when the initial estimation errors of the gyroscope
bias and attitude are large, we set the initial estimates
as follows: b̂1|1 = b̆ + (1/h0)(−0.001, 0.005, 0.005)T = b̆ +
(−0.06, 0.3, 0.3)T (rad/s) and R̂1|1 ← R̆1 exp([a1]), where

a1 = (3.13/
√

3)(1, 1, 1)T . Recall that b̆ can be obtained un-
der the stationary IMU assumption.

Like our earlier simulation results, Figs. 4 and 5 show that the
proposed method “UKF on SO(3)” converges the most rapidly,
whereas other methods show slow convergence rates and rela-
tively large overshoots. To further experimentally verify these
results, we collect nine additional sets of real data. As shown
in Table III, “UKF on SO(3)” demonstrates superior perfor-
mance compared to existing methods in terms of the accuracy
of attitude estimates.
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TABLE IV
AVERAGE COMPUTATION TIMES FOR EACH FILTER (IN MICRO-SECONDS)

We also measure, at every time step, the computation
times for each filter—all implemented in C++ and executed
on a desktop computer with Intel i5-4670 (3.4 GHz) CPU.
The computation times for each estimator are averaged over
Nr steps. From Table IV it can be seen that “NCF on
SO(3)” is the fastest among the estimators. Computation times
for “UKF on SO(3)” are similar to those for “Quaternion
UKF.”

VI. CONCLUSION

This paper has presented a geometric unscented Kalman fil-
tering algorithm for simultaneously estimating attitude and gy-
roscope bias from an inertial measurement unit. Drawing upon
the Lie group properties of the set of rotation matrices SO(3),
we derive a discrete-time stochastic nonlinear filtering algorithm
evolving on SO(3)×R3. One of the key features of our algorithm
is to express observations as elements of SO(3), by determining
the rotation corresponding to the IMU’s gravitational acceler-
ation and magnetic field vector measurements as a solution to
Wahba’s Problem. By doing so, first-order linear approxima-
tions of the state dynamics and measurement equations lead to
closed-form equations for covariance propagation and update.
These in turn lead to computationally efficient implementations
of our filter, with the resulting attitude estimates invariant with
respect to the choice of fixed and moving reference frames. Ex-
tensive numerical simulation and hardware experiments have
demonstrated the superior convergence behavior and estima-
tion accuracy of our proposed algorithm compared to exist-
ing state-of-the-art IMU estimators for attitude and gyroscope
bias.

APPENDIX A
FIRST-ORDER APPROXIMATION OF EXPONENTIAL MAP

Given [x], [y] ∈ so(3), let [z] ∈ so(3) satisfy

exp([z]) = exp([x]) exp([y]). (46)

From the Baker–Campbell–Hausdorff formula [29], we have

[z] = log(exp([x]) exp([y]))

= [x] + [y] +
1
2
[[x], [y]] +

1
12

[[x], [[x], [y]]]

+
1
12

[[y], [[y], [x]]] + · · · .

The Lie bracket operator [·, ·] : so(3)× so(3)→ so(3) is de-
fined as [[a], [b]] = [a][b]− [b][a] for [a], [b] ∈ so(3). [c] =
[[a], [b]] ∈ so(3) also admits the vector representation c =
[a]b ∈ R3.

If we assume that ‖x‖ is small, then by gathering only terms
linear in x, the following approximation holds [23]:

z ≈ y +
∞∑

n=0

Bn

n!
[y]nx (47)

where Bn are the Bernoulli numbers (B0 = 1, B1 = − 1
2 , B2 =

1
6 , . . .). The Bernoulli numbers satisfy the following series ex-
pression: x

ex−1 =
∑∞

n=0
Bn

n ! xn for any scalar x �= 0.
Letting [x′] = [z]− [y] ∈ so(3), we have

exp([x′] + [y]) = exp([x]) exp([y]) (48)

with

x ≈ Jl(y)x′ (49)

where

Jl(y) =

( ∞∑
n=0

Bn

n!
[y]n

)−1

(50)

=
∞∑

n=0

1
(n + 1)!

[y]n (51)

=
∫ 1

0
exp([y]s) ds (52)

denotes the left Jacobian of SO(3) on y [23]. The closed-form
formula of Jl(y) is given by

Jl(y) = I +
(

1− cos ‖y‖
‖y‖2

)
[y] +

(‖y‖ − sin ‖y‖
‖y‖3

)
[y]2.

(53)

APPENDIX B
UKF COVARIANCE UPDATE ON SO(3)×R3

From (1), a random variable R ∈ SO(3) can be defined as

R := exp([ϕ]) R̂ (54)

where ϕ ∼ N (0,Pϕ) is the right-translated exponential noise
and R̂ ∈ SO(3) is the state estimate. We refer to Pϕ as the
right-invariant covariance of R.

The right-translated exponential noise after the time update
as described in Section III-B2 is assumed to be zero-mean Gaus-
sian, with covariance Pk+1|k calculated by (20). Special caution
is required when computing Pk+1|k+1, which is the a posteri-
ori right-invariant covariance of (Rk+1,bk+1) after the mea-
surement update. If one implements the measurement update
as in standard vector space UKF, the state (Rk+1,bk+1) is
given by

Rk+1 = exp([ξ(a) ]) R̂k+1|k (55)

bk+1 = b̂k+1|k + ξ(b) (56)

where ξ(a) , ξ(b) ∈ R3 refer to the upper and lower halves of
ξ ∼ N (φ,Pk+1|k −KPyyKT ). However, sinceφ �= 0 in gen-
eral, there exists a discrepancy between the random variable
models (54) and (55). Equation (55) is therefore reformulated
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to conform to (54) (i.e., to satisfy the property of “zero-mean”
right-translated exponential noise). Assume that (Rk+1,bk+1)
can be represented as

Rk+1 = exp([ε′(a) ]) R̂k+1|k+1 (57)

bk+1 = b̂k+1|k+1 + ε′(b) (58)

where ε′ ∼ N (0,Pε′) and Pk+1|k+1 = Pε′ . We now find Pε′ .
Define the vector ε ∈ R6 by ε := ξ − φ. ε has the following

distribution: ε ∼ N (0,Pε), where

Pε = Pk+1|k −KPyyKT . (59)

Since ξ = ε+ φ, (55) can be rewritten as

Rk+1 = exp([ε(a) + φ(a) ]) R̂k+1|k . (60)

Substituting (27) into (57), we have

Rk+1 = exp([ε′(a) ]) exp([φ(a) ]) R̂k+1|k . (61)

Combining (60) and (61) leads to

exp([ε(a) + φ(a) ]) = exp([ε′(a) ]) exp([φ(a) ]) (62)

and ε(b) = ξ(b) − φ(b) = ε′(b) holds by equating (56) and
(58) using (27). If ‖ε‖  1, from the first-order approxima-
tion derived from the Baker–Campbell–Hausdorff formula in
Appendix A, it follows that

ε′ ≈M(φ)ε

where

M(φ) =

[
Jl(φ(a)) 0

0 I

]
(63)

and Jl(φ(a)) denotes the left Jacobian of SO(3) at φ(a) , with
corresponding closed-form equation given by (13). Finally, we
have

Pk+1|k+1 = Pε′ ≈M(φ)PεM(φ)T (64)

where Pε is given by (59). This justifies (28) in Section III-B3.
([33] and [34] propose slightly different algorithms from (64):
the former proposes a method for covariance correction of the
quaternion state, while the latter takes a first-order approxima-
tion of both φ(a) and the noise vector ε(a) in the derivation. In
contrast, (64) is derived solely from the first-order approxima-
tion of ε.)

Remark 1: If the left-invariant noise is adopted [12], the right
Jacobian should be used in the covariance update equation.

APPENDIX C
MOTION AND MAGNETIC DISTURBANCES

If a triaxial accelerometer is subject to large accelerations, it
outputs the vector sum of the negative gravitational accelera-
tion vector and other accelerations due to external forces; the
resulting acceleration vector measurement is expressed in the
moving frame {B} attached to the IMU. In [35], these addi-
tional acceleration terms are referred to as motion disturbances.

In magnetically disturbed environments, the measurement of a
triaxial magnetometer deviates from the local magnetic field
expressed in frame {B} coordinates.

To detect these disturbances, a number of reliability functions
have been proposed [8], [35]. In [36], it is claimed that checking
only the norms of the calibrated outputs of the accelerome-
ters and magnetometers is in many cases sufficient for practical
purposes. Let ṽi ∈ R3, i = 1, 2 be the unnormalized calibrated
output vector of the three-axis accelerometer or magnetometer at
a particular instant. If |‖ṽi‖ − 1| > γi for some positive thresh-
old value γi , the disturbance is regarded as detected; otherwise
no disturbance is presumed to exist.

When dealing with motion or magnetic disturbances in
stochastic attitude filtering, two methods are commonly used.

1) Adaptation of noise covariances [37]: If a disturbance is
detected, then the noise covariance of the Kalman filter
is adjusted.

2) Measurement reconstruction with a vector selector [38]:
If a disturbance is detected, then ṽi is replaced by
R̂T

k+1|kri . Here, R̂k+1|k is given by (19).
In our estimator, the measurement reconstruction method

with a vector selector is used.

APPENDIX D
EXTRINSIC MEAN OF UNIT VECTORS

Proposition 1: Given a set of N unit vectors in Rd , denoted
Sv = {vi ∈ Rd | ‖vi‖ = 1, i = 1, . . . , N}, the extrinsic mean
of Sv is defined as v∗ := arg minv

∑N
i=1 ‖vi − v‖2 subject to

‖v‖ = 1. If m :=
∑N

i=1 vi �= 0, then v∗ = m/‖m‖.
Proof: Defining L(v, λ) =

∑N
i=1 ‖vi − v‖2 + λ(vT v − 1)

where λ > 0, the first-order necessary conditions for optimality
( ∂L(v∗,λ)

∂v∗ = 0 and ∂L(v∗,λ)
∂λ

= 0) yield the result.

APPENDIX E
PROOF OF (30)

Given the inverse Ā ∈ SO(3) of the true attitude, consider the
following slightly modified version of the optimization problem
of (4):

θ∗ = arg min
θ∈R3

2∑
i=1

1
σ2

i

‖vi − exp([θ]) Āri‖2 (65)

where vi = Āri + Δvi , and Δvi denotes the zero-mean mea-
surement noise. The covariance of the random variable Δvi is
given by (35), and exp([θ])Ā corresponds to the inverse of the
optimization variable R in (4). Assuming that Δvi is small, the
solution θ∗ will be located near the origin. Under the first-order
approximation exp([θ]) ≈ I + [θ], the objective function can
be approximated as

θ∗ = arg min
θ∈R3

2∑
i=1

1
σ2

i

‖Δvi + [Āri ]θ‖2. (66)

Equation (66) corresponds to a linear least-squares estimation
problem, with the optimal estimate given as a linear function of
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Δvi as follows:

θ∗ =
2∑

i=1

JiΔvi

where

Ji = M−1(
1
σ2

i

[Ari ]) (67)

and

M :=
2∑

i=1

1
σ2

i

(I− ĀrirT
i ĀT ). (68)

Here, M denotes the Fisher information matrix [27]. Since (66)
has the form of a linear least-squares estimation problem, the
covariance of θ∗ achieves the CRLB [39]. The covariance of θ∗

is therefore given by

E(θ∗θ∗T ) =
2∑

i=1

JiE(ΔviΔvT
i )JT

i (69)

= M−1 (70)

where E(θ∗) = 0 is used. Since R = Ā−1 exp(−[θ]) holds, the
left-invariant covariance of R in (4) is the same as the covariance
of θ. This completes the proof.
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